## Math 102

Krishanu Sankar

November 29, 2018

## Announcements

- Review sessions
- Today and tomorrow 4-7PM, in SWNG 122.
- Mine is today (Thursday) 6-7PM. I plan to go through the 2013 WT1 Final Exam and work through questions selected by popular demand.
- Final Exam Information
- When: Tuesday Dec 4, 3:30 to 6:00 PM.
- Where: Math 100.
- No calculators, no notes. Bring your UBC ID.
- Format is similar to the midterm, but 2.5 hours.
- Course Evaluations
- Accessible from Canvas (see Course Evaluations tab on left)
- Close on December 3
- Should take about 10-15 minutes
- Please complete it! The feedback is valuable to me and the department.


## Goals Today

- Related rates - Zebrafish predator response


## The Escape Response

Zebrafish flee if they determine that a predator is approaching. Larry Dill, a biologist at Simon Fraser University, hypothesized that zebrafish's escape response is triggered when the visual angle subtended by an approaching object changes rapidly enough. That is, when $\frac{d \alpha}{d t}>K_{\text {crit }}$, for some critical threshold $K_{\text {crit }}$.


## The Escape Response



- $x=$ distance from zebrafish to predator
- $S=$ size of predator
- $\alpha=$ visual angle
- $K_{\text {crit }}=$ constant

When is $\frac{d \alpha}{d t}>K_{\text {crit }}$ ?


Question: Suppose that the zebrafish approaches at a constant speed of $v$. That is, $\frac{d x}{d t}=-v$. Then calculate $\frac{d \alpha}{d t}$ as a function of $x, S$, and $v$.


Question: Suppose that the zebrafish approaches at a constant speed of $v$. That is, $\frac{d x}{d t}=-v$. Then calculate $\frac{d \alpha}{d t}$ as a function of $x, S$, and $v$.

$$
\begin{aligned}
\alpha & =2 \arctan \left(\frac{S}{2 x}\right) \\
\frac{d \alpha}{d t} & =\frac{2}{1+(S / 2 x)^{2}} \frac{d(S / 2 x)}{d t}
\end{aligned}
$$



Question: Suppose that the zebrafish approaches at a constant speed of $v$. That is, $\frac{d x}{d t}=-v$. Then calculate $\frac{d \alpha}{d t}$ as a function of $x, S$, and $v$.

$$
\begin{gathered}
\alpha=2 \arctan \left(\frac{S}{2 x}\right) \\
\frac{d \alpha}{d t}=\frac{2}{1+(S / 2 x)^{2}}\left(-\frac{S}{2 x^{2}}\right) \frac{d x}{d t}
\end{gathered}
$$



Question: Suppose that the zebrafish approaches at a constant speed of $v$. That is, $\frac{d x}{d t}=-v$. Then calculate $\frac{d \alpha}{d t}$ as a function of $x, S$, and $v$.

$$
\begin{gathered}
\alpha=2 \arctan \left(\frac{S}{2 x}\right) \\
\frac{d \alpha}{d t}=\frac{2}{1+(S / 2 x)^{2}}\left(-\frac{S}{2 x^{2}}\right)(-v)
\end{gathered}
$$



Question: Suppose that the zebrafish approaches at a constant speed of $v$. That is, $\frac{d x}{d t}=-v$. Then calculate $\frac{d \alpha}{d t}$ as a function of $x, S$, and $v$.

$$
\begin{gathered}
\alpha=2 \arctan \left(\frac{S}{2 x}\right) \\
\frac{d \alpha}{d t}=\frac{2}{1+(S / 2 x)^{2}}\left(-\frac{S}{2 x^{2}}\right)(-v)=\frac{S v}{x^{2}+S^{2} / 4}
\end{gathered}
$$


https:
//www.desmos.com/calculator/aivt2ypu6c

## Predator velocity



Question: How slowly must a predator of size $S$ approach in order to not spook the

$$
\frac{d \alpha}{d t}=\frac{S v}{x^{2}+S^{2} / 4}
$$

 zebrafish?

## Predator velocity



Question: How slowly must a predator of size $S$ approach in order to not spooke the zebrafish? $v<\frac{K_{\text {crit }} S}{4}$

$$
\frac{d \alpha}{d t}=\frac{S v}{x^{2}+S^{2} / 4}
$$



## Reaction distance



$$
\frac{S v}{x^{2}+S^{2} / 4}=K_{\mathrm{crit}}
$$

Conclusion: If a predator of size $S$ approaches with velocity $v$, the zebrafish reacts at distance
$x_{\text {react }}=\sqrt{\frac{S v}{K_{\text {crit }}}-\frac{S^{2}}{4}}$.

Predator design - Big fish, small fish?
Question: Plot $x_{\text {react }}=\sqrt{\frac{S_{v}}{K_{\text {cit }}}-\frac{S^{2}}{4}}$ as a function of $S$. Assume $v$ and $K_{\text {crit }}$ are constants.


## Predator design - Big fish, small fish?

Question: Plot $x_{\text {react }}=\sqrt{\frac{S v}{K_{\text {clit }}}-\frac{S^{2}}{4}}$ as a function of $S$. Assume $v$ and $K_{\text {crit }}$ are constants.


## Predator design - Big fish, small fish?

Question: Plot $x_{\text {react }}=\sqrt{\frac{S v}{K_{\text {cit }}}-\frac{S^{2}}{4}}$ as a function of $S$. Assume $v$ and $K_{\text {crit }}$ are constants.


Question: Which predator scares the zebrafish the most? Big, small, or medium?

## Predator design - Big fish, small fish?

Question: Plot $x_{\text {react }}=\sqrt{\frac{S v}{K_{\text {crit }}}-\frac{S^{2}}{4}}$ as a function of $S$. Assume $v$ and $K_{\text {crit }}$ are constants.


Question: Which predator scares the zebrafish the most? Big, small, or medium? A predator of size $2 v / K$.

# Thanks for a great semester! GOOD LUCK! 

