Math 102

Krishanu Sankar

November 29, 2018

Announcements

- Review sessions
 - Today and tomorrow 4-7PM, in SWNG 122.
 - Mine is today (Thursday) 6-7PM. I plan to go through the 2013 WT1 Final Exam and work through questions selected by popular demand.
- Final Exam Information
 - ▶ When: Tuesday Dec 4, 3:30 to 6:00 PM.
 - Where: Math 100.
 - No calculators, no notes. Bring your UBC ID.
 - Format is similar to the midterm, but 2.5 hours.
- Course Evaluations
 - Accessible from Canvas (see Course Evaluations tab on left)
 - Close on December 3
 - Should take about 10-15 minutes
 - Please complete it! The feedback is valuable to me and the department.

Related rates - Zebrafish predator response

The Escape Response

Zebrafish flee if they determine that a predator is approaching. Larry Dill, a biologist at Simon Fraser University, hypothesized that zebrafish's escape response is triggered when the *visual angle* subtended by an approaching object changes rapidly enough. That is, when $\frac{d\alpha}{dt} > K_{\rm crit}$, for some critical threshold $K_{\rm crit}$.

The Escape Response

- x =distance from zebrafish to predator
- \blacktriangleright S = size of predator
- $\alpha = visual angle$
- K_{crit} = constant

When is $\frac{d\alpha}{dt} > K_{crit}$?

Question: Suppose that the zebrafish approaches at a constant speed of v. That is, $\frac{dx}{dt} = -v$. Then calculate $\frac{d\alpha}{dt}$ as a function of x, S, and v.

$$\alpha = 2 \arctan\left(\frac{S}{2x}\right)$$
$$\frac{d\alpha}{dt} = \frac{2}{1 + (S/2x)^2} \frac{d(S/2x)}{dt}$$

$$\alpha = 2 \arctan\left(\frac{S}{2x}\right)$$
$$\frac{d\alpha}{dt} = \frac{2}{1 + (S/2x)^2} \left(-\frac{S}{2x^2}\right) \frac{dx}{dt}$$

$$\alpha = 2 \arctan\left(\frac{S}{2x}\right)$$
$$\frac{d\alpha}{dt} = \frac{2}{1 + (S/2x)^2} \left(-\frac{S}{2x^2}\right) (-v)$$

$$\alpha = 2 \arctan\left(\frac{S}{2x}\right)$$
$$\frac{d\alpha}{dt} = \frac{2}{1 + (S/2x)^2} \left(-\frac{S}{2x^2}\right)(-v) = \frac{Sv}{x^2 + S^2/4}$$

$$\frac{d\alpha}{dt} = \frac{Sv}{x^2 + S^2/4}$$

https: //www.desmos.com/calculator/aivt2ypu6c

Predator velocity

Question: How slowly must a predator of size S approach in order to not spook the zebrafish?

Predator velocity

Question: How slowly must a predator of size S approach in order to not spooke the zebrafish? $v < \frac{K_{crit}S}{4}$

Reaction distance

Conclusion: If a predator of size *S* approaches with velocity *v*, the zebrafish reacts at distance $x_{\text{react}} = \sqrt{\frac{Sv}{K_{\text{crit}}} - \frac{S^2}{4}}.$

Question: Which predator scares the zebrafish the most? Big, small, or medium?

Question: Which predator scares the zebrafish the most? Big, small, or medium? A predator of size 2v/K.

Thanks for a great semester! GOOD LUCK!